Modulation of the Major Paths of Carbon in Photorespiratory Mutants of Synechocystis
نویسندگان
چکیده
BACKGROUND Recent studies using transcript and metabolite profiles of wild-type and gene deletion mutants revealed that photorespiratory pathways are essential for the growth of Synechocystis sp. PCC 6803 under atmospheric conditions. Pool size changes of primary metabolites, such as glycine and glycolate, indicated a link to photorespiration. METHODOLOGY/PRINCIPAL FINDINGS The (13)C labelling kinetics of primary metabolites were analysed in photoautotrophically grown cultures of Synechocystis sp. PCC 6803 by gas chromatography-mass spectrometry (GC-MS) to demonstrate the link with photorespiration. Cells pre-acclimated to high CO(2) (5%, HC) or limited CO(2) (0.035%, LC) conditions were pulse-labelled under very high (2% w/w) (13)C-NaHCO(3) (VHC) conditions followed by treatment with ambient (12)C at HC and LC conditions, respectively. The (13)C enrichment, relative changes in pool size, and (13)C flux of selected metabolites were evaluated. We demonstrate two major paths of CO(2) assimilation via Rubisco in Synechocystis, i.e., from 3PGA via PEP to aspartate, malate and citrate or, to a lesser extent, from 3PGA via glucose-6-phosphate to sucrose. The results reveal evidence of carbon channelling from 3PGA to the PEP pool. Furthermore, (13)C labelling of glycolate was observed under conditions thought to suppress photorespiration. Using the glycolate-accumulating ΔglcD1 mutant, we demonstrate enhanced (13)C partitioning into the glycolate pool under conditions favouring photorespiration and enhanced (13)C partitioning into the glycine pool of the glycine-accumulating ΔgcvT mutant. Under LC conditions, the photorespiratory mutants ΔglcD1 and ΔgcvT showed enhanced activity of the additional carbon-fixing PEP carboxylase pathway. CONCLUSIONS/SIGNIFICANCE With our approach of non-steady-state (13)C labelling and analysis of metabolite pool sizes with respective (13)C enrichments, we identify the use and modulation of major pathways of carbon assimilation in Synechocystis in the presence of high and low inorganic carbon supplies.
منابع مشابه
Metabolome phenotyping of inorganic carbon limitation in cells of the wild type and photorespiratory mutants of the cyanobacterium Synechocystis sp. strain PCC 6803.
The amount of inorganic carbon represents one of the main environmental factors determining productivity of photoautotrophic organisms. Using the model cyanobacterium Synechocystis sp. PCC 6803, we performed a first metabolome study with cyanobacterial cells shifted from high CO(2) (5% in air) into conditions of low CO(2) (LC; ambient air with 0.035% CO(2)). Using gas chromatography-mass spectr...
متن کاملInterplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803.
Flavodiiron (Flv) proteins are involved in detoxification of O(2) and NO in anaerobic bacteria and archaea. Cyanobacterial Flv proteins, on the contrary, function in oxygenic environment and possess an extra NAD(P)H:flavin oxidoreductase module. Synechocystis sp. PCC 6803 has four genes (sll1521, sll0219, sll0550, and sll0217) encoding Flv proteins (Flv1, Flv2, Flv3, and Flv4). Previous in vitr...
متن کاملIntegrated Analysis of Engineered Carbon Limitation in a Quadruple CO2/HCO3- Uptake Mutant of Synechocystis sp. PCC 6803.
Cyanobacteria have efficient carbon concentration mechanisms and suppress photorespiration in response to inorganic carbon (Ci) limitation. We studied intracellular Ci limitation in the slow-growing CO2/HCO3 (-)-uptake mutant ΔndhD3 (for NADH dehydrogenase subunit D3)/ndhD4 (for NADH dehydrogenase subunit D4)/cmpA (for bicarbonate transport system substrate-binding protein A)/sbtA (for sodium-d...
متن کاملExperimental Study and Numerical Modeling of CO2 Bio-Fixation in a Continues Photobioreactor
A dynamic numerical model was developed to predict the biomass concentration, pH, and carbon dioxide fixation rate in the continuous culture of cyanobacteria in a photobioreactor. The model is based on the growth rate equation of microalgae combined with mass transfer equations for gas and liquid phases in the photobioreactor as well as thermodynamic equilibrium of inorganic carbon ions in the ...
متن کاملStudy of Light Wavelength Dependency in Red-Orange Spectrum on Continuous Culture of Synechocystis sp. PCC6803
In this study, the effect of light wavelength on growth rate and lipid production of Synechocystis was investigated. Continuous cultivation system was used to have uniform cell density and avoid self-shading in order to obtain more precise results. Based on previous studies, red light is more efficient than other colors in the visible spectrum for cultivation of Synechocystis; however, the opti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011